诗歌讲究句式、格调、语言含义等一系列规则,一首好的诗歌会给人以强烈的画面感,在视觉和心灵上引发读者的共鸣。让机器去创造诗歌,这可能会令很多文人嗤之以鼻, 他们肯定会认为让一个没有任何感情的机器如何去创作诗歌。话虽如此,但是机器的一个最大的优势就是知识量渊博,茫茫的诗歌库对于机器可能只要几天就能掌握, 书到用时方恨少,现在已经掌握了庞大数量的书去创造诗歌,结果如何呢?
2018-10-13
GAN
311
GAN自诞生到现在一直面临着模型训练不稳定的问题,尽管已经有很多方法在极力控制着GAN训练的稳定,但是都没有从根本上解决这个问题。 实验中的Trick,损失函数的变换,正则化的引入等等都是解决GAN训练不稳定的方法,SN-GAN利用谱归一化的方法, 使得GAN满足Lipschitz假设,从而让模型更加稳定。
GAN自2014年提出到现在已经有4年了,这4年来非常多围绕GAN的论文相继诞生,其中在改进GAN损失函数上的论文就有好多篇, 今天我们一起来梳理一下知名的在GAN的损失函数上改进的Loss函数,并在tensorflow上进行汇总实现。
subscribe via RSS