梯度下降法已经在神经网络的网络优化上普遍性使用,今天我们一起来研究一下梯度下降法。

1.梯度

在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y 求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)^T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂y0)^T. 或者▽f(x0,y0),如果是3个参数的向量梯度,就是(∂f/∂x, ∂f/∂y,∂f/∂z)^T,以此类推。

那么这个梯度向量求出来有什么意义呢?他的意义从几何意义上讲,就是函数变化增加最快的地方。具体来说,对于函数f(x,y),在点 (x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)^T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到 函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)^T的方向,梯度减少最快,也就是更加容易找到函数的 最小值。

2.梯度下降与梯度上升

在机器学习算法中,在最小化损失函数时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数,和模型参数值。反过来, 如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。

梯度下降法和梯度上升法是可以互相转化的。比如我们需要求解损失函数f(θ)的最小值,这时我们需要用梯度下降法来迭代求解。但是 实际上,我们可以反过来求解损失函数 -f(θ)的最大值,这时梯度上升法就派上用场了。

下面来详细总结下梯度下降法。

3.梯度下降法算法详解

梯度下降的直观解释

首先来看看梯度下降的一个直观的解释。比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是 在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度, 向这一步所在位置沿着最陡峭最易下山的位置走一步。这样一步步的走下去,一直走到觉得我们已经到了山脚。当然这样走下去,有可能 我们不能走到山脚,而是到了某一个局部的山峰低处。

从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部最优解。当然,如果损失函数是凸函数,梯度下降法 得到的解就一定是全局最优解。

梯度下降的相关概念

在详细了解梯度下降的算法之前,我们先看看相关的一些概念。

1.步长(Learning rate):步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度。用上面下山的例子,步长就是在当 前这一步所在位置沿着最陡峭最易下山的位置走的那一步的长度。

2.特征(feature):指的是样本中输入部分,比如样本(x0,y0),(x1,y1),则样本特征为x,样本输出为y。

3.假设函数(hypothesis function):在监督学习中,为了拟合输入样本,而使用的假设函数,记为hθ(x)。比如对于样本(xi,yi) (i=1,2,…n),可以采用拟合函数如下: hθ(x) = θ0+θ1x。

4.损失函数(loss function):为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好, 对应的模型参数即为最优参数。在线性回归中,损失函数通常为样本输出和假设函数的差取平方。比如对于样本(xi,yi)(i=1,2,…n), 采用线性回归,损失函数为:

其中xi表示样本特征x的第i个元素,yi表示样本输出y的第i个元素,hθ(xi)为假设函数。

4.梯度下降的详细算法

梯度下降法的算法可以有代数法和矩阵法(也称向量法)两种表示,如果对矩阵分析不熟悉,则代数法更加容易理解。不过矩阵法更加的 简洁,且由于使用了矩阵,实现逻辑更加的一目了然。这里先介绍代数法,后介绍矩阵法。

梯度下降法的代数方式描述

1.先决条件: 确认优化模型的假设函数和损失函数。

比如对于线性回归,假设函数表示为, 其中θi(i = 0,1,2… n)为模型参数,xi(i = 0,1,2… n) 为每个样本的n个特征值。这个表示可以简化,我们增加一个特征x0=1,这样

同样是线性回归,对应于上面的假设函数,损失函数为:

2.算法相关参数初始化:主要是初始化θ0,θ1…,θn,算法终止距离ε以及步长α。在没有任何先验知识的时候,我喜欢将所有的θ 初始化为0, 将步长初始化为1。在调优的时候再优化。

3.算法过程:

1)确定当前位置的损失函数的梯度,对于θi,其梯度表达式如下:

2)用步长乘以损失函数的梯度,得到当前位置下降的距离,即α对应于前面登山例 子中的某一步。

3)确定是否所有的θi,梯度下降的距离都小于ε,如果小于ε则算法终止,当前所有的θi(i=0,1,…n)即为最终结果。否则进入步骤4.

4)更新所有的θ,对于θi,其更新表达式如下。更新完毕后继续转入步骤1.

下面用线性回归的例子来具体描述梯度下降。假设我们的样本是

损失函数如前面先决条件所述:

则在算法过程步骤1中对于θi的偏导数计算如下:

由于样本中没有x0上式中令所有的为1.

步骤4中θi的更新表达式如下:

从这个例子可以看出当前点的梯度方向是由所有的样本决定的,加1/m 是为了好理解。由于步长也为常数,他们的乘机也为常数,所以 这里α1/m可以用一个常数表示。

强调一下上述的算法描述可以转换为矩阵形式,具体转换看这里

梯度下降的算法调优

在使用梯度下降时,需要进行调优。哪些地方需要调优呢?

1.算法的步长选择。在前面的算法描述中,我提到取步长为1,但是实际上取值取决于数据样本,可以多取一些值,从大到小,分别运行 算法,看看迭代效果,如果损失函数在变小,说明取值有效,否则要增大步长。前面说了。步长太大,会导致迭代过快,甚至有可能错过 最优解。步长太小,迭代速度太慢,很长时间算法都不能结束。所以算法的步长需要多次运行后才能得到一个较为优的值。

2.算法参数的初始值选择。 初始值不同,获得的最小值也有可能不同,因此梯度下降求得的只是局部最小值;当然如果损失函数是凸 函数则一定是最优解。由于有局部最优解的风险,需要多次用不同初始值运行算法,关键损失函数的最小值,选择损失函数最小化的初值。

3.归一化。由于样本不同特征的取值范围不一样,可能导致迭代很慢,为了减少特征取值的影响,可以对特征数据归一化,也就是对于每 个特征x,求出它的期望E(x)和标准差std(x),然后转化为:

这样特征的新期望为0,新方差为1,迭代次数可以大大加快。

5.梯度下降法大家族(BGD,SGD,MBGD)

批量梯度下降法(Batch Gradient Descent) 批量梯度下降法,是梯度下降法最常用的形式,具体做法也就是在更新参数时使用所有的样本来进行更新,这个方法对应于前面的线性 回归的梯度下降算法,也就是说上述的梯度下降算法就是批量梯度下降法。

由于我们有m个样本,这里求梯度的时候就用了所有m个样本的梯度数据。

随机梯度下降法(Stochastic Gradient Descent) 随机梯度下降法,其实和批量梯度下降法原理类似,区别在与求梯度时没有用所有的m个样本的数据,而是仅仅选取一个样本j来求梯度。 对应的更新公式是:

随机梯度下降法,和批量梯度下降法是两个极端,一个采用所有数据来梯度下降,一个用一个样本来梯度下降。自然各自的优缺点都非常 突出。对于训练速度来说,随机梯度下降法由于每次仅仅采用一个样本来迭代,训练速度很快,而批量梯度下降法在样本量很大的时候, 训练速度不能让人满意。对于准确度来说,随机梯度下降法用于仅仅用一个样本决定梯度方向,导致解很有可能不是最优。对于收敛速度 来说,由于随机梯度下降法一次迭代一个样本,导致迭代方向变化很大,不能很快的收敛到局部最优解。

那么,有没有一个中庸的办法能够结合两种方法的优点呢?有!这就是接下来要说的小批量梯度下降法。

小批量梯度下降法(Mini-batch Gradient Descent) 小批量梯度下降法是批量梯度下降法和随机梯度下降法的折衷,也就是对于m个样本,我们采用x个样子来迭代,1<x<m。一般可以取x=10, 当然根据样本的数据,可以调整这个x的值。对应的更新公式是:

6.梯度下降法和其他无约束优化算法的比较

在机器学习中的无约束优化算法,除了梯度下降以外,还有前面提到的最小二乘法,此外还有牛顿法和拟牛顿法。

梯度下降法和最小二乘法相比,梯度下降法需要选择步长,而最小二乘法不需要。梯度下降法是迭代求解,最小二乘法是计算解析解。 如果样本量不算很大,且存在解析解,最小二乘法比起梯度下降法要有优势,计算速度很快。但是如果样本量很大,用最小二乘法由于 需要求一个超级大的逆矩阵,这时就很难或者很慢才能求解解析解了,使用迭代的梯度下降法比较有优势。

梯度下降法和牛顿法/拟牛顿法相比,两者都是迭代求解,不过梯度下降法是梯度求解,而牛顿法/拟牛顿法是用二阶的海森矩阵的逆矩阵 或伪逆矩阵求解。相对而言,使用牛顿法/拟牛顿法收敛更快。但是每次迭代的时间比梯度下降法长。

谢谢观看,希望对您有所帮助,欢迎指正错误,欢迎一起讨论!!!